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with clusters of impurities, we cannot hope to duplicate 
the detailed structure which we expect to exist at the 
high-frequency end of the spectrum.3 In other words, 
the present calculation probably gives a g(x) which is 
suitable for calculation of the specific heat but which 

3 P. Dean, Proc. Roy. Soc. (London) 260, 263 (1961). 

is not adequate for, say, transport calculations where 
the detailed dynamics of the system may be more 
important. 

Apropos of the broad impurity band, we should men
tion that Flinn, Maradudin, and Weiss4 have found a 
spectrum in remarkably good agreement with Fig. 3 
using a completely different method. Also, it appears to 
be characteristic of the self-consistent field approxima
tion to broaden the spectrum of allowed eigenvalues 
from that obtained using (4) or its analog. Klauder5 

has found this to be the case in his study of electron 
spectra in disordered metals. 

4 P. A. Flinn, A. A. Maradudin, and G. H. Weiss, Westinghouse 
Research Report (unpublished). 

6 J. R. Klauder, Ann. Phys. (N.Y.) 14, 43 (1961). 
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An expression for the field-emission current in a longitudinal magnetic field is derived in the zero-tempera
ture limit. Two cases are considered, corresponding to constant Fermi energy (A) and constant electron 
density (B). In both cases the calculated current density contains an oscillatory contribution periodic in 
1/H, as well as a term which decreases as the square of the magnetic field. In case B, however, an oscillatory 
contribution appears that is absent in case A. Since the two oscillatory terms in case B differ in phase and 
their amplitudes depend on different powers of H, it should be possible to distinguish between cases A and 
B. The current-decrease quadratic in H has its origin in the steady diamagnetism of the electron gas. Using 
accepted values of effective mass, Fermi energy, and work function, we find that for bismuth the predicted 
variations of the emission current with magnetic field should be readily observable. 

INTRODUCTION 

THE effects of a strong magnetic field upon the 
physical properties of metals, semimetals, and 

semiconductors have received considerable attention 
in recent years.1 Much of the impetus derived from the 
lucid exposition of Lifshitz and co-workers2 who demon
strated the far-reaching inferences that could be drawn 
from measurements of magnetoresistance and Hall 
effect on pure single crystals at low temperatures. At 
the same time, Harrison's work3 provided a simple link 
between de Haas-van Alphen data and what had 
appeared to be very complicated band structures of 

* Supported by the Office of Aerospace Research of the U. S. 
Air Force under contract AF49(638)-70. 

1 High Magnetic Fields (John Wiley & Sons, Inc., New York, 
and Tech Press, Cambridge, Massachusetts, 1962), cf. particularly 
Part III . 

2 1 . M. Lifshitz and V. G. Peschanskii, Zh. Eksperim. i Teor. 
Fiz. 35, 1251 (1958); 38, 180 (1960) [translations: Soviet Phys.— 
JETP 8, 875 (1959); 11, 131 (I960)]. N. E. Alekseevskii, Yu. P. 
Gaidukov, I. M. Lifshitz, and V. G. Peschanskii, ibid. 39, 1201 
(1960) [translation: ibid. 12, 837 (1961)]. 

3 W. A. Harrison, Phys. Rev. 126, 497 (1962); 118, 1190 (1960); 
116, 555 (1959). 

most polyvalent metals. Finally, improved techniques 
of crystal purification and growth, the attainment of 
magnetic fields of better than 105 G by pulse techniques, 
and the development of improved experimental tech
niques account for the rapid accretion in recent years 
of de Haas-van Alphen, Shubnikov-de Haas, cyclotron 
resonance, and related data on a host of conductors.4 

Application of a magnetic field to a free-electron gas 
gives rise to highly degenerate energy levels separated 
bytia>—(5*H— efiH/rn*c as well as to regular singularities 
in the density-of-states function, thereby exerting a 
profound influence on any physical property either 
directly or indirectly related to the electronic system. 
Variations of the magnetic susceptibility, of the specific 
heat, and of the transport properties periodic in H~l are 
the direct effects most frequently investigated. The 
only indirect effect that has been studied is the in
fluence of a magnetic field on the velocity of sound.5 

4 The Fermi Surface, edited by W. A. Harrison and M. B. Webb 
(John Wiley & Sons, Inc., New York, 1960). 

5 M. J. Harrison, Phys. Rev. Letters 9, 299 (1962); J. J. Quinn 
and S. Rodriguez, ibid. 9, 145 (1962). 
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On the following pages we focus attention on yet 
another direct effect which, as far as we know, has not 
been the subject of either theoretical or experimental 
investigation, namely, the current emitted from a cold 
metallic surface in a strong electric field. The periodic 
variations in %, Cv, and the transport properties with 
magnetic field arise because N(rj), the density of states 
at the Fermi energy 77, exhibits singularities at intervals 
periodic in H~x, and all of the aforementioned properties 
depend critically upon N (rj). By contrast, in high-field 
emission all the conduction electrons can contribute 
to the current although the probability of emission is 
greater for electrons of higher energy. The observed 
current is thus a suitable integral over the electron 
distribution, and, consequently, we would expect the 
oscillations in H~l to be somewhat less well defined. 
Nevertheless, as we shall see, periodic variations of the 
emission current with magnetic field should be readily 
observable under appropriate, physically attainable 
conditions. 

The phenomenon we consider here bears some 
similarity to current oscillations in tunnel diodes in 
strong longitudinal magnetic fields.6 In that case, the 
current oscillations arise, indirectly, from oscillations 
of the electron Fermi level which brings forth corre
sponding changes in the junction field.7 Since the barrier 
width in a tunnel diode is roughly independent of energy 
in the energy range of interest, the electrons that make 
the dominant contribution to the tunnel current are 
those in the lowest orbital quantum states. In our case, 
we face a somewhat different situation. The width of the 
barrier increases with decreasing electron energy and 
normally only electrons near the Fermi energy con
tribute to field emission.8 

CALCULATION OF THE EMISSION CURRENT 

The allowed energy levels of an electron in a mag
netic field, chosen along the z direction, are given by9 

€=€Z(*.) = €,+ €, = *0)(/+i)+*2*,V2f»*, (1) 

where 

co = eH/rn*c (2) 

is the cyclotron frequency of electrons of effective mass 
m* and I is a positive integer or zero. 

The number of states with quantum number I and 
energy between e and e+de is 

2eH 
Ni(e)de= (2m*)1 '2(€-e,)-1 '2d€. 

Wc 
(3) 

6 A. G. Chynoweth, R. A. Logan, and P. A. Wolff, Phys. Rev. 
Letters 5, 548 (1960). 

7 R. R. Haering and P. B. Miller, Phys. Rev. Letters 6, 269 
(1961). 

8 R. H. Good and E. W. Mueller, in Handbuch der Physik, 
edited by S. Flugge (Springer-Verlag, Berlin, 1956), 2nd ed., pp. 
176,231. 

9 We shall disregard spin splitting throughout this discussion. 

The emitted current density is given by the product 
of the flux of electrons of energy e incident on the surface 
of the metal from within and the penetration prob
ability D integrated over the entire electron distribu
tion. The flux of electrons with energy about €, vz>0, 
and quantum number I is 

if(e)vZtl(*)Ni(e)de, 

where f(e) is the Fermi distribution and the factor in
takes account of the fact that for given e only half the 
electrons have a positive z component of velocity. We, 
thus, are led to the following expression for Jh the 
current density attributable to the Zth orbital level: 

Ji= / ~-f(e)Dl(e)de. 
J €1 Vc 

(4) 

Finally, the total emission current density is obtained 
by summing over all orbital states; i.e., J—^i J\. 

We now proceed on the assumption that the pene
tration probability in a longitudinal magnetic field is 
the same as in zero field. Accordingly, Di(e) = Di(ez,F) 
is given to good approximation by8 

where 
d J 

3.79X10-4-

9.76X10"9F 

(»*/*»)I/V/*<(3.79X lO-'F1'2/^) 

(5) 

(6) 

(7) 

Here, F is the electric field in V/cm at the surface of 
the metal; $ is the work function in eV; v(y) and t(y) 
are functions evaluated by Burgess, Kroemer, and 
Houston10 and shown in Fig. 1. 

From (4) and (5) we obtain the simple result 

where 

J^AEBi f fWdde, 
l Jei 

2e2H 
A= e-l0+nld] 

Vc 

Bi=e~*lld. 

(8) 

(8a) 

(8b) 

The integral in Eq. (8) is of a type commonly en
countered and is conveniently evaluated in a series in 
powers of kT/rj. In the present treatment we restrict 
ourselves to the limit T —> 0 and retain only those non-

10 R. E. Burgess, H. Kroemer, and J. M. Houston, Phys. Rev. 
90, 515 (1953). 
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FIG. 1. The functions v(y) and t(y). 

vanishing terms of lowest order in the expansion 
parameter. In this approximation, 

(9) 

The prime on the summation denotes that the sum is to 
be taken over all values of I between 0 and lmax, where 
lmax is given by lm&K=rj/^~~h With the aid of the 
Poisson summation formula, one readily obtains 

/ 
d(e^d-l)-rj 

hu [UwY+ifi^/dyj 

hco\ 

r 

= Ad\ 

X 2vpsin(2irpri/fua)-(— j(cos(27rpr}/hcc)-e^d) 

s in (2x^ /M L (10) 

irp ) J 
The oscillations in J with H, periodic in 1/H, are 
apparent from Eq. (10). 

We here distinguish between two situations which 
often may not be realized in practice but which repre
sent extreme limits. 

(A) The light-mass conduction band overlaps a 
heavy-mass hole band, and (B) there is no band overlap 
whatever. 

Case A is approximated by many semimetals, such as 
bismuth, in which de Haas-van Alphen oscillations are 
most easily observed. Case B is probably rare in all but 
monovalent metals, but may be approximated in suit
ably doped n-type semiconductors, for example, ^-InSb. 

In case A, the high density-of-states hole band will 
maintain a fixed Fermi level by accommodating elec
trons from or contributing them to the electron band as 
the magnetic field is varied. In case B, the number of 
electrons will remain fixed and the Fermi energy now 
depends on the strength of the applied magnetic field. 

In case A, Eq. (10) represents the final result. If, 

however, n is fixed, additional oscillatory terms appear 
that arise from the variation of rj with H. At constant 
electron concentration, the Fermi energy in a magnetic 
field is given by11 

i7 = i7o{l 
I 1 2 \ 770 / 

1 /ho) 

1 2 \ 770 / 80 V T/o J ' 4 8 \ 770 

1 /7T&7Y 
f ] + -

A 77o/ 

1 /7rkTfto)\2 irkT(ha>)112 « (-l)*sinX 
+ — ( - ) T-3T-Z 

3 8 4 \ 77o2 V2M 3/2 3==i %/q sin£) 

kT<r]oyfto)<voy (11) 

where 770 is the Fermi energy at J ,= 0°K, # = 0 , and X 
and £ are given by 

X = lirCM/fiu—7r/4, 

^2w2qkT/fio). 
(12) 

In the zero-temperature limit, to which we are re
stricting our treatment, Eq. (11) reduces to 

1 / f e \ 2 

uGff) = uoU+—(• 
y 1 /ho\3'2 

48\^o/ (S^yA^j 

- ( -1)* 
X E sinX (13) 

It is the Fermi energy y(H), as given by Eq. (13), 
which must be substituted in Eq. (10) when evaluating 
the emission current for case B. Although the field 
dependence of the Fermi energy through the monotonic 
increase with H2 and the oscillatory terms is relatively 
small, nevertheless, this effect cannot be neglected, 
particularly in the first term of Eq. (10) where the 
Fermi energy appears in the exponent. Provided 
fio)/rjo<^l, it is permissible to replace 77 by 770 in the 
expression for X, Eq. (12), and also in the arguments of 
the trigonometric function in Eq. (10). This simplifying 
approximation cannot be employed at fields of sufficient 
strength such that fuo>rjo, the prevailing situation 
already at moderate fields (~15kG) in bismuth and 
at even lower fields in dilute BiSb alloys. 

NUMERICAL EVALUATION OF THE 
EMISSION CURRENT 

In this section we present results of a numerical 
evaluation of Eq. (10) for bismuth using reasonable 
values of electric field and other parameters. The pre
ferred value of the work function of bismuth is 4.25 eV12; 
for the Fermi energy 770 and effective mass w* we take 
15.7X10-3 eV and 0.0105 m0

iz; for the electric field we 
select a representative value of 3X107 V/cm. One 

11R. B. Dingle, Proc. Roy. Soc. (London) A211, 500 (1952). 
12 H. Jupnik, Phys. Rev. 60, 884 (1941). 
13 J. E. Kunzler, F. S. L. Hsu, and W. S. Boyle, Phys. Rev. 128, 

1084 (1962). 
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£=1.43, d=1 .33eV 

^ * = L l X l O - 3 e V / k G . 

From these numerical values it follows directly that for 
reasonable magnetic fields, less than 50 kG, say, 

fio)/d^l and also rjo/d<^l. 

We may, therefore, use these ratios as expansion param
eters in the evaluation of Eq. (10). To lowest order in 
tico/d, rio/d, we obtain 

l/ha>\2 l/ha>\2 

where 

^.KJ^y^v*)), (14) 
I 8\77o/ 4X770/ \feo/J 

Inem*^2 

A'= e~ 

G(x) is the periodic function 

G(*) = i-4x2, " 2 < ^ « ^ ' < ^ 2 

shown in Fig. 2. 
Since bismuth approximates case A (constant n), 

Eq. (14) is the desired result. At fields near 10 kG 
oscillations whose amplitudes are about 10% of the 
average current should appear. 

For comparison, we give also the result for case B 
(constant n) using the same numerical parameters. 
We obtain then, retaining only terms to order (fiw/rjo)2, 

1 /ha>\2 l/ho)\2 /?7o\ 

12\W 4 \W \*cJ 
/ 1 \1'2(fio)\*l2 / i 7 o \ l 

J=A' 

where 

\ho)/ P=I 
( -1 )* 

sin (2irpr]/fua—7r/4) 

Vp 

For the parameters we have selected ^4^5000 A/cm2. 
Of the three field-dependent terms in (15), the last 

clearly dominates at low fields; i.e., when &a><<0?o. As 
the magnetic field is increased and fiw approaches 770, 
the term involving the function G(rjo/fio)) takes on in
creasing importance. Since G(rj/fua) and F(rj/hui) differ 
in phase by 7r/4, and the amplitudes of the oscillation 
have a slightly different field dependence, it should be 
possible to identify the two experimentally. Finally, we 
anticipate a monotonic decrease in / with £T, given by 
the term •£$ (fioo/rjo)2, which has the same origin as the 
steady diamagnetic susceptibility of the electron gas. 

CONCLUSION 

We have investigated theoretically the variation of 
the high-field emission current in a longitudinal mag
netic field in the zero-temperature limit within the 
single-particle free-electron approximation. Under suit
able conditions, perhaps most easily realized in bismuth 
and bismuth-antimony alloys, the emission current 
should show oscillations of the de Haas-van Alphen 
type. Moreover, we anticipate a monotonic decrease in 
emission, quadratic in H. 

The expressions for the emission current in the cases 
of constant Fermi energy and constant electron concen
tration differ through the presence, in the latter in
stance, of an additional oscillatory term whose phase 
and field dependence set it apart from the term which 
alone determines the oscillatory behavior in the former 
case. Since a fixed Fermi energy implies the presence 
of an overlapping high density-of-states band, emission 
current variations, apart from their intrinsic interest, 
may provide useful information on the band structure. 
I t may also develop that the dependence of the emission 
current on magnetic field could prove valuable in 
the study of surface effects in semimetals and some 
semiconductors. 

In our derivation of the equation for the emission 
current, we have assumed that the penetration prob
ability, 2), does not depend explicitly on the magnetic 
field. This assumption cannot be justified either theo
retically or by recourse to experimental data since such 
is, as yet, nonexistent. I t may well be that the function 
D(ez,F) depends on H also; this would surely modify 
the behavior profoundly, but at present it seems futile 
to try to anticipate that contingency. 

Note added in proof. The author would like to thank 
Dr. N. Goldberg and Dr. I. Pollak for calling to his 
attention an error in sign in Eq. (10) of the original 
manuscript. 


